
The 2019 Southeastern Europe Regional Contest

The 2019 Southeastern Europe Regional Contest
Editorial

Lorina Negreanu (lorina.negreanu@cs.pub.ro) & Anton Tsypko (tsypko@oi.in.ua)

Page 1 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Max or Min”
Author: Roman Bilyi

Developer: Roman Bilyi
Editorialist: Stanislav Bezkorovainyi

Before solving the problem for all k from 1 to m, let’s try to solve a problem for a fixed number k.

It’s obvious, that if there is no element of array a that is equal to k, then the answer is −1.
Otherwise, the answer always exists. Let’s prove it.

At first, let’s replace all the elements in the array by the following rule:

• If ai < k, then ai := −1 (replace ai with −1)

• If ai = k, then ai := 0 (replace ai with 0).

• If ai > k, then ai := 1 (replace ai with 1)

Now, the problem is equivalent to the previous one, we just have to make elements of the array equal to
0.

Let’s call zebra a subarray of the array a that consists of altering numbers −1 and 1. Examples of zebras
are: [−1], [1], [−1, 1,−1], [1,−1], [1,−1, 1,−1, 1,−1, 1], [−1, 1,−1, 1,−1, 1,−1, 1,−1]. Note, that since the
array is arranged in a circle, arrays like, for example, [1,−1,−1,−1] have zebra [−1, 1,−1] that starts
from the last element.

Since the elements are arranged in a circle, then cyclical shifts do not change it. Let’s make necessary
number of cyclical shifts to left, so that the first element of the array is equal to 0. Now we know for sure,
that there are no zebras that come through index 1. It helps, because it ensures that finding all zebras in
our cyclical string is now equivalent to finding all zebras in the string after the shifts. Why do we even
need to find these zebras? We’ll come to that later.

Let’s define Z(a) as a multiset of lengths of the longest sequential zebras. How we build it:

At first we stick the pointer p at position 1. Then the following algorithm works until p ≤ n:

• If ap = 0, then increase p by 1. Repeat the algorithm.

• Otherwise, let len be the length of the longest possible zebra that starts from position p. Add len
to Z(a) and increase p by len. Repeat the algorithm.

For example, if a was [k,−1, 1,−1,−1, 1, k,−1,−1], then Z(a) = {3, 2, 1, 1} (the longest zebra that starts
on position 2 has length 3, the longest zebra that starts on position 5 has length 2, the longest zebras
that start on positions 8 and 9 have length 1).

Let’s define function cnt(a, c) that returns number of occurrences of c in the array a. Let’s define f(a) as
a function that takes the array a as an argument and returns the following value:

f(a) = cnt(a,−1) + cnt(a, 1) +
∑

z∈Z(a)

⌊z
2

⌋
In other words, f(a) equals to number of elements that are not equal to 0 plus the sum of floored lengths
of zebras divided by two.

Claim. The answer is equal to f(a).

Those, who don’t want to read lengthy proofs can skip to How to implement it? section. For those,
who want to read the proof, here it is:

Proof.

Page 2 of 21

The 2019 Southeastern Europe Regional Contest

• Claim. f(a) = 0 if and only if all the elements of the array are equal to k.

Proof. If all the elements are equal to 0, then cnt(a,−1) = cnt(a, 1) = 0 and there are definitely
no zebras in the array, so f(a) = 0. It works in the other direction too: if f(a) = 0, then
cnt(a,−1) + cnt(a, 1) = 0, so there are no elements that are not equal to 0, i.e. all of the elements
of the array are equal to 0.

What it gives us? It means that our problem is equivalent to problem of reducing value of f(a)
of our initial array to 0 in as few operations as possible.

• Claim. If we can transform our array a into array b in one operation, then f(b) ≥ f(a)−1. In other
words, we can not reduce the value of the function more than by one in an operation.

Proof. At first, we should notice, that an operation that changes value of the element that is equal
to 0 only increases value of cnt(a,−1) + cnt(a, 1), thus f(b) > f(a) if b was obtained by changing
value of an element in the array that is equal to 0.

Now it is left to prove that changing value of an element that is equal to either −1 or 1 can not
reduce the value of the function more than by one. I’ll show you why changing an element that is
equal to 1 can not do this. The proof for −1 is very similar.

Let’s suppose that ai = 1 for some i. Now let’s look at all possible triples [ai−1, ai, ai+1] (since the
array is cyclical a0 = an, an+1 = a1). There are 9 possible triples:

– [1, 1, 1]. We can not change ai at all.
– [−1, 1, 1]. We can make ai equal to −1. Even though ai might belong to a zebra, it is easy to

proof that changing it to −1 won’t affect f(a) by more, than 1.
– [1, 1,−1]. The same as the previous one.
– [−1, 1,−1]. We can make ai equal to −1. It doesn’t change cnt(a,−1) + cnt(a, 1), but it is

obvious that ai belongs to some zebra that starts on position p < i. By setting value of ai as
−1 we ”split“ this zebra into two zebras which start at positions p and i+1. Let’s say that their
lengths are len1 and len2 respectively. The length of the zebra before the split is len1+ len2+1
(it included ai). Now, f(b) = f(a) −

⌊
len1+len2+1

2

⌋
+
⌊
len1
2

⌋
+
⌊
len2
2

⌋
. It is easy to prove, that⌊

len1+len2+1
2

⌋
−
⌊
len1
2

⌋
−
⌊
len2
2

⌋
is either equal to 0 or 1. In order to prove this, you should test

how expanding flooring brackets will work for cases, when: len1 is even and len2 is even, len1

is even and len2 is odd, len1 is odd and len2 is even, and both len1 and len2 are odd.
– [0, 1, 1]. We can make ai equal to 0. It will only affect cnt(a, 1), because of that f(b) = f(a)−1.
– [1, 1, 0]. The same as the previous one.
– [0, 1, 0]. We can make ai equal to 0. f(b) = f(a)− 1 as well.
– [−1, 1, 0]. We can make ai equal to −1. It will not affect cnt(a,−1)+cnt(a, 1). It is also obvious

that ai belongs to some zebra. Let’s suppose that it’s length is len. f(b) = f(a)−
⌊
len
2

⌋
+
⌊
len−1

2

⌋
.

It is obvious, that
⌊
len
2

⌋
−
⌊
len−1

2

⌋
is equal to either 0 or 1.

– [0, 1,−1]. The same as the previous one.

What it gives us? Now we know that f(a) is the lower bound of number of operations needed to
make all the elements of the array equal to 0.

• Claim. It is always possible to solve the problem in f(a) operations.

Proof. We do it using the following algorithm:

1. Look through all positions i such that ai = 0 and ai−1 6= 0. If there are no such positions, then
all the elements of the array are equal to 0 and thus the algorithm should stop. If such position
i exists, then proceed to step 2.

2. If [ai−2, ai−1, ai] is equal to either [0,−1, 0], [0, 1, 0], [−1,−1, 0] or [1, 1, 0], then we set value
ai−1 as k, which will obviously decrease the value of f(a). After that, return to step 1. If the
array is not equal to neither of the mentioned above, then don’t do anything and go to step 3.

Page 3 of 21

The 2019 Southeastern Europe Regional Contest

3. Now we know, that [ai−2, ai−1, ai] is equal to either [1,−1, 0] or [−1, 1, 0]. It is obvious, that ai−2
belongs to some zebra of length greater than 1. By applying min or max operation respectively
we can make ai−2 have same value as ai−1.
If the zebra’s length is greater, then 2, then after making ai−1 and ai−2 equal, ai−3, ai−2, ai−1
will have same values, thus, the zebra will no longer contain elements ai−2 and ai−1, so it’s
length will be decreased by 2, so it’s length divided by two will be decreased by one. This is
why f(a) will be decreased by 1.
If the zebra’s length is equal to 2, then, obviously, the zebra contains only elements ai−1 and
ai−2. If they are equal, then the zebra no longer exists at all. Thus, f(a) will be decreased by
1.
After making ai−2 equal to ai−1, return to step 1.

What it gives us? Now we know, that f(a) is the lower bound of our answer and it is always
achievable. Thus, f(a) is the answer.

How to implement it? It is obvious how to find f(a) in O(n) for a fixed k. But we need to solve the
problem for all k from 1 to m.

Let’s remember for each value from 1 to m on which positions they occur. And set all ai := 1.

Let’s define arrays p, len and value sumz:

• Let’s say that an element on a position i belongs to some zebra, then the value of pi is the position
from which the zebra starts. If ai = 0, then pi = i.

• If there is a zebra that starts from position i, then the value of leni is equal to length of that zebra.
If no zebra starts from position i, then leni = 0.

• sumz is equal to
∑

z∈Z(a)

⌊
z
2

⌋
, assuming that our array is not cyclical (i.e we do not count zebras

that contain both positions 1 and n).

Let’s also define procedure upd(pos, val). upd(pos, val) changes value of apos to val in a way that sustains
all the arrays p and len and value sumz valid.

Now, let’s make all pi := 1 and thus all leni := 1, sumz := 0. Now, we iterate k from 1 to m, solving the
problem for every possible k in the following way:

• If the value k has no occurences, then the answer for this k is −1.

• Otherwise, proceed:

– Now, we should iterate over all positions i, where k occurred and call upd(i, 0).

– Now, answer ansk for k is equal to number of positions, where k doesn’t occur plus sumz. But
we need to make sure the zebra that contains both elements on positions n and 1 (if it exists)
is counted too. If a1 = 0 or an = 0 or an = a1, then the zebra doesn’t exist at all, so we don’t
need to modify ansk. Otherwise, the zebra exists and we need to modify ansk in the following
way: ansk := ansk −

⌊
len1
2

⌋
−
⌊ lenpn

2

⌋
+
⌊ len1+lenpn

2

⌋
. This modifying is equivalent to deleting

zebras that start on positions 1 and pn (this is the zebra that contains n) and adding zebra of
length len1 + lenpn .

– Now, we should iterate over all positions i, where k occurred and call upd(i,−1).

This algorithm will always work, because, since we iterate k in ascending order, once position is
assigned −1 we will never have to change it’s value again.

The only question is how to implement upd(pos, val). In order to simplify it’s implementation, I will use
the fact if val = 0, then apos previously was 1, and if val = −1, then apos previously was 0.

Page 4 of 21

The 2019 Southeastern Europe Regional Contest

• If val = 0, then do the following:

– If ppos+ lenppos − 1 = pos (i.e the zebra, that contains position pos ends on it), then we should
decrease sumz by

⌊ lenppos

2

⌋
−
⌊ lenppos−1

2

⌋
and decrease lenppos by one.

– Otherwise, the zebra doen’t end on position pos, so transforming apos into k will split it.
Decrease sumz by

⌊ lenppos

2

⌋
−
⌊pos−ppos

2

⌋
−
⌊ppos+lenppos−1−pos

2

⌋
(basicaly, we just split the

zebra). Assign pi := pos + 1 for all i from pos + 1 to ppos + lenppos − 1. So now, we set
lenpos+1 := ppos + lenppos − 1− pos, lenppos := pos− ppos.

– In the end, in both cases, set ppos := pos, lenpos := 0, apos := 0.

• If val = −1, then do the following:

– At first, set apos := −1, lenpos := 1, ppos := pos.

– If pos < n and apos+1 = 1, then there is a zebra that starts form position pos that contains
zebra that starts from position pos+ 1 as a suffix. Increase sumz by

⌊ lenpos+1+1
2

⌋
−
⌊ lenpos+1

2

⌋
.

Set pi := pos for all i from pos+ 1 to pos+ lenpos+1. Set lenpos := lenpos+1 + 1, lenpos+1 := 0.

– If pos > 1 and apos−1 = 1, then there is a zebra that starts from position
ppos−1 that has zebra that starts from position pos as a suffix. Increase sumz by⌊ lenppos−1+lenpos

2

⌋
−
⌊ lenppos−1

2

⌋
−
⌊ lenpos

2

⌋
. Set pi := ppos−1 for all i from pos to pos+ lenpos− 1.

Set lenppos−1 := lenppos−1 + lenpos, lenpos := 0.

In order to assign some value on a segment in O(log n) you can use Segment Tree (you can read more
about this data structure here https://cp-algorithms.com/data_structures/segment_tree.html).
Since upd(pos, val) is called exactly 2 times for each pos, then the procedure is called O(n) times. Every
call is done in O(log n), thus, the final time complexity is O(n log n).

Page 5 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Level Up”

Author: Stefan Ruseti
Developer: Adrian Budau
Editorialist: Adrian Budau

The first idea would be to go through the quests in order and pick whether or not we solve that quest at
the first level or at the second level.

We can use dynamic programming for this: dp[i][j][k] to be at quest i and have accumulated j experience
at the first level and k experience at the second level.

When we are at a state dp[i][j][k] and are deciding what to do with quest i + 1 we might run into
this special case: we try to solve quest i + 1 in the first level but we overflow the experience into the
second level (j + xi > S1). We must remember to use the overflow experience at the second level. (so
dp[i][j][k]− > dp[i+ 1][S1][k + (j + xi − S1)]).

Unfortunately, we don’t exactly try all possible orders to do the quests, and especially the quest that
triggers the overflow. We solve quests independently at each level in the order we process the quests. But,
there is a simple observation to be made: if in a correct solution we solve the quests (i1, i2, i3, ..., iK) at
the first level in this particular order, we could reorder quests i1, i2, ..., iK−1 and get a different solution.
We can not exactly pick any quest to be the last at level 1.

For example if we have 4 quests we want to do at the first level, 3 giving 30 experience each and 1 giving
90 experience and S1 = 100 the only way to solve them at the first level is to first solve the 3 quests giving
30 each (therefore accumulating 90 experience) and then solving the 90 experience quest. We can see that
if we can overflow using a quest giving U experience from the list i1, i2, . . . , iK than we can overflow with
any quest giving V ≥ U experience.

So that means we could set the order of solving the quests: ascendant order by their first level experience
(xi). Now we can use the dynamic programming solution describe above with no other modification.

Total complexity: O(n ·s1 ·s2) time and O(n ·s1 ·s2) or O(s1 ·s2) (depending on implementation) memory.

Page 6 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Find the Array”

Author: Anton Trygub
Developer: Stanislav Bezkorovainyi
Editorialist: Stanislav Bezkorovainyi

If n ≤ 30, that we can simply find the array using 30 queries of type 1. Otherwise we should do the
following:

At first, we should find the position of maximum or minimum element of the array. Let’s define those
positions as w and u respectively. Now, use query of type 2 on the whole array. Let’s denote the maximum
element of the resulting array as M . It is obvious that M = aw − au.

What does it mean if the maximum element of the resulting array on query of type 2 for some subset of
indexes S is equal to M? It means that both w and u belong to S. Now, we can using binary search find
the leftmost position pos such that the maximum element of the resulting array on the query of type 2
for set of indexes {1, 2, . . . , pos} is equal to M .

Since both u and w belong to {1, 2, . . . , pos} and one of them does not belong to {1, 2, . . . , pos− 1}, u or
w is equal to pos. For now, it does not really matter whether u = pos or w = pos. What matters is that,
since all ai are distinct and that the value of apos is whether smaller or greater than value of any ai, there
is no such pair of indexes (j, i), i 6= j that |apos − ai| = |apos − aj |.
Let’s denote bi = |apos−ai|. It’s obvious, that bpos = 0. Now we should find bi for every 1 ≤ i ≤ n, i 6= pos.
All bi will be distinct.

At first, let’s define function F (Q) = B that takes some set of indexes Q, such that pos /∈ Q as an
argument and returns set B that contains all bi for any i ∈ Q. How to implement such function in your
program? That’s quite simple. At first, let’s denote set A as the result of query 2 on set of indexes Q and
set A′ as the result of query 2 on set Q ∪ {pos}. Then, F (Q) = A′ \ A (All elements, that belong to A′,
but do not belong to A). Since all bi are different, size of set Q will always be equal to size of F (Q).

Now, let’s use divide and conquer approach.

Let’s say that we have some set of positions Q and set B = F (Q). We want to know bi for every i ∈ Q.
There are two possible scenarios:

• Size of Q is equal to 1. Then bi is the only element of set B, while i is the only element of set Q.
Thus, we know bi without any additional queries.

• We split Q into two sets S1, S2 such that first b |Q|2 c elements of set Q go into set S1 and the rest
of them go into S2. We can find B1 = F (S1), B2 = F (S2) in one call of function F : B1 = F (S1),
B2 = B \B1. Now, we should solve the problem independently for sets S1, B1 and S2, B2.

At the beginning of the algorithm, Q contains all indexes except pos and B is calculated in a
straightforward way B := F (Q).

A split of a set takes 1 call of F , but wait a second... There are ≈ n splits. It is no better than simply
asking value for every index with query 1! Yeah, I know. But we can optimize it easily into O(log2n) calls
of F .

It is easy to notice that splits on the same depth of our “divide and conquer binary tree” can be done
simultaneously with only only call of function F . Let’s say that there are k sets Q1, Q2, . . . , Qk about to
be split on the same depth. Their first halfs are S11 , S21 , . . . , Sk1 . Let’s define A = F (S11 ∪S21 ∪ . . .∪Sk1)
(Function of union of all Si1). Now, for every 1 ≤ i ≤ k Bi1 = Bi ∩A,Bi2 = Bi \Bi1 .

Depth of the tree is at most dlog2ne. So that we will make at most dlog2ne calls of function F + one
call in order to get F (Q) for the initial set. Every call of F takes exactly 2 queries, so we will spend
2 · dlog2n+ 1e queries on this part of the program.

Page 7 of 21

The 2019 Southeastern Europe Regional Contest

Now, we know bi for every 1 ≤ i ≤ n. Let’s define pos2 as such index that bpos2 = max(b1, b2, . . . , bn).
Since the minimal element has the greatest difference with the maximal element and vice versa, if apos is
the minimal element, then apos2 is the maximal one and vice versa. Let’s use query 1 to ask the value of
apos and the value of apos2 . There are two possible scenarios:

• apos > apos2 . That means apos is the maximal element of the array a and thus ai = apos − bi for
every 1 ≤ i ≤ n.

• apos < apos2 . That means apos is the minimal element of the array a and thus ai = apos+bi for every
1 ≤ i ≤ n.

Overall, we used 1+ dlog2ne queries to find pos, 2 · dlog2ne+2 queries to find bi for every i and 2 queries
to find values of apos and apos2 .

1 + dlog2ne+ 2 · dlog2ne+ 2 + 2 = 5 + 3 · dlog2ne = 5 + 3 · dlog2250e = 29

Note. Be careful while implemeting binary search and function F . Otherwise, you may find yourself getting
Wrong Answer due to very strict constraints.

Page 8 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Cycle String?”

Author: Anton Trygub
Developer: Nazarii Denha
Editorialist: Stanislav Bezkorovainyi

Let’s say, that cntch is the number of occurrences of character ch in the string. Let’s say that cm is such
a character, that cntcm is maximum among all cntch.

Now, there are several possible scenarios.

Scenario 1. cntcm = 2 · n. In other words, the string consists of the same characters. Obviously, the
answer in that case is “NO”.

Scenario 2. cntcm = 2 · n − 1 and n ≥ 2. In other words, the string consists of the same characters,
except for one position. The answer in that case is “NO”.

Proof. Let’s say that cm = “a” and the only symbol not equal to cm is equal to “c”. Our string will look
like this:

aaaaaaaaaa . . . aaaaacaaaaa . . . aaaaaaaaaa

Since the string is cyclical, then cyclical shiftings of the string do not change it. Let’s shift it the way that
the only character that differs from the rest is placed on the right side of the string. Now the string looks
like this:

n characters︷ ︸︸ ︷
a aaaaa . . . aaaaaaa︸ ︷︷ ︸

n characters

aaaa . . . aaaaac

Scenario 3. cntcm = 2 · n − 2, n ≥ 3 and the characters besides cm are the same. The answer in that
case is “NO”.

Proof. Let’s say that cm = “a” and the rest of the characters are equal to “c”. Now we shift the string
with cyclic shifts in such a way that the first character of the sting is “c”. Let’s denote the other position
on the string, where character “c” is placed as p. Now, our string looks like this:

p characters︷ ︸︸ ︷
caaaaa . . . aaac aaa . . . aaaaaa

It is obvious that p − 2 < n + 1. Otherwise, there would have been at least two strings of length n
containing only characters “a” between 1 and p. For similar reason 2 · n− p < n+ 1.

p− 2 < n+ 1⇐⇒ p < n+ 3

2 · n− p < n+ 1⇐⇒ n− p < 1⇐⇒ p > n− 1

Now we know that p is either equal to n or n+ 1 or n+ 2.

Why not n? The substring t is equal to concatenation of string g1 and g2 (remember, our string is cyclical,
so everything is fine):

ca︸︷︷︸
g2

t︷ ︸︸ ︷
aaaa . . . aaaca aaaaaa . . . aaaaaa︸ ︷︷ ︸

g1=n−2 same symbols

Why not n+ 1? The substring t is equal to substring g:

Page 9 of 21

The 2019 Southeastern Europe Regional Contest

t︷ ︸︸ ︷
caaaaa . . . aaa

g︷ ︸︸ ︷
caaaaa . . . aaa

Why not n+2? We can make n+1 cyclic shifts to left and after that we’ll get the same situation as when
p = n.

So there is no valid way to place p, so the answer is “NO”.

Scenario 4. cntcm = 2 · n− 2, n ≥ 3 and the characters besides cm are distinct. In this case the answer
is “YES”.

Proof + the way to build such string. Let’s say that cm = “a” and the other two characters are
equal to “c” and “d”. We can build the answer this way:

n symbols︷ ︸︸ ︷
caaa . . . aaa

n symbols︷ ︸︸ ︷
daaa . . . aaa

It is obvious that every substring will contain either “c” or “d” but not both of them. Since there is only
one character “c”, any two different substrings that contain “c” will have it on different positions and thus
will be distinct. The same goes for any two substrings that contain “d”.

Scenario 5. cntcm ≤ n. In this case the answer is “YES”.

Proof + the way to build such string. We can simply sort the string.

Let’s suppose that it does not work and there are two identical substrings si and sj of length n that start
on positions i and j respectively, where i < j. Let’s denote the first character of sj as c. Let’s say that at
the beginning of the string sj there are p ≤ n characters c. Since si = sj same should go for si. If character
at position j + p − 1 is equal to c too, then, since the string is sorted, there are at least j + p − i > p
characters c at the beginning of the string si. We face contradiction and thus, the statement is false, i.e
there are indeed no same substrings that start on different positions.

Scenario 6. n < cntcm ≤ 2 · n− 3. In this case the answer is “YES”.

Proof + the way to build such string. Let’s say that cm = “a” and the rest of the symbols are “b”,
“c”, “d”, . . . , “z”. We can put an arbitrary symbol besides cm on the first position, then n symbols cm
(let’s call it block1), then all the remaining symbols besides cm in any order (let’s call it block2), then
cntcm − n symbols cm (let’s call it block3):

b

block1 — n symbols cm︷ ︸︸ ︷
aaaaaaaaaaa . . . aaaaaaaaaaa

block2 — the rest of the symbols︷ ︸︸ ︷
zbtbcydcceecgy . . . vwqxheyqyui

block3 — cntcm−n symbols cm︷ ︸︸ ︷
aaaaaaaaaaa . . . aaaaaaaaaaa

We should notice, that since cntcm ≤ 2 ·n−3⇐⇒ cntcm−n ≤ n−3. And thus length of block3 is smaller
than n− 2.

Why all of the substrings of length n will be unique?

• Substring that starts on position 1 is the only substring that starts from a symbol that is not equal
to cm and is followed by n− 1 characters cm.

• Substring that starts on position 2 is the only substring that consists only of characters cm.

• Substring that starts on position 3 is the only substring that has n−1 symbols cm at the beginning
and one symbol that is not equal to cm in the end.

• Substrings that start on positions from 4 to n + 1 are the only substrings that start from cm and
they have a substring of length ≥ 2 that consists of characters that are not equal to cm. They will
differ among themselves because they all have different number of cm-s at their beginning.

Page 10 of 21

The 2019 Southeastern Europe Regional Contest

• Substrings that start on positions in block2 are the only substrings that start from symbol that is
not equal to cm and have ≤ n−2 characters cm in them. They will differ among themselves because
lengths of their prefixes that do not contain symbol cm are distinct.

• Substrings that start from positions in block3 are the only substrings that start with symbol cm and
have a symbol surrounded by cm-s that is not equal to cm (I’m talking about the first character of
the string). They will differ among themselves by positions of the character that is not equal to cm.

Page 11 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Life Transfer”

Author: Eugenie Daniel Posdărascu
Developer: Radu Vis,an
Editorialist: Adrian Budău

The easy approach to this problem is to fix the number of motorcycles to rent. The number of cars needed
will be uniquely determined by this.

Now let’s say we want C cars and M motorcycles. We need the oldest C people to drive the cars, and the
next oldest M people to drive the motorcycles. For both of these groups we can divide the people into 4
categories:

• People that have at least d years more than the minimum age required to drive the vehicle. From
these people, we can afford to take d years from each of them to give to someone else.

• People that have the minimum age required to drive the vehicle, but they are less than d years
older than the minimum age required. From these people we can take years equal to their age out
of which we subtract lc or lm respectively. This can be rewritten as the sum of their ages - lc or lm
multiplied by their number.

• People that do not have the minimum age required to drive the vehicle, but need less than or equal
to d years to reach it. This is symmetrical to the case above: they need years equal to lp or lm out
of which we subtract the sum of their ages.

• People that are more than d years younger than the minimum required age to drive their vehicle.
In this case, it means C and M can not represent the number of cars and motorcycles.

We can also divide the rest of the people in two categories:

• People with age at least d+ 1 out of which we can take d years to give to someone else (treated as
the first category for cars/motorcycles)

• People with age less than or equal to d, out of which we can take years equal to their age minus 1
(treated as the second category for cars/motorcycles).

It can be seen that if we order all people by age all these categories of people become intervals which we
can precompute for the whole array and then restrict depending on C and M . And the number of years
we can take / we need to give become partial sums on this ordered array of years.

Total complexity: O(n log n) time and O(n) space.

Page 12 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Game on a Tree”

Author: Anton Trygub
Developer: Maksym Zub
Editorialist: Stanislav Bezkorovainyi

It is easy to notice that if a vertex u is an ancestor of vertex v, then vertex v is a descendant of vertex u.
And thus if we can move the chip from u to vertex v, then we can also move the chip from vertex v to
vertex u.

Now let’s build a new undirected graph G, that consists of n vertices. In graph G two vertices v and u
are connected with an edge if and only if v is an ancestor of u or u is an ancestor v in the original tree.

Obviously, playing the game on the tree is equivalent to playing the game on this graph, just with a small
change. In the tree we could move the chip from vertex u to vertex v if and only if u was either ancestor of
v or descendant of v. In graph G we can move the chip from vertex u to vertex v iff u and v are connected
with an edge.

Now let’s find a maximum matching of the graph. More information about matchings of graphs and their
properties can be read on page http://bit.ly/seerc-2019-matching. But I’ll provide a few definitions
here:

A matching in a graph is a set of edges without common vertices.

A maximum matching is a matching that contains the largest possible number of edges.

A perfect matching is a matching which matches all vertices of the graph.

Claim. If a maximum matching of graph G is a perfect matching, then the second player wins. Otherwise,
the first one wins.

Proof.

• At first, let’s proof that if the matching is perfect, then the second player wins. Let’s suppose that set
of edges E is a perfect matching of graph G. As we all know, every edge in an undirected graph can
be defined by a pair a numbers — pair of vertices that the edge connects. So, actually, by building
a perfect matching we divide n vertices into n

2 pairs of vertices (v1, u1), (v2, u2), . . . , (vn
2
, un

2
), such

that every vertex from graph G belongs to exactly one pair.

Let’s see how Bob has to play in order to win this game. Let’s say that on the first turn Alice chooses
to put the chip on vertex a. Since the matching is perfect, vertex a belongs to some pair. Let it be
(a, b). Then Bob chooses to move the chip to vertex b. So now, all the vertices from the pair are
used, so the players won’t be able to the chip on neither vertex a nor on vertex b. Now Alice has to
put the chip in a vertex that belongs to another pair. And so on.

In general, if on turn k Alice decides to put the chip on vertex ak, Bob finds the pair (ak, bk) to
which ak belongs and moves the chip to vertex bk. Since we know that wherever Alice decides to
put the chip Bob will still have the next vertex to go, it is obvious that Alice will loose, and thus
Bob will win.

• Now let’s proof that if the maximum matching is not perfect, then Alice can always win.

Let E be a maximum matching of graph G. E is a set of edges and thus, it can be also represented
as a set of pairs of vertices (v1, u1), (v2, u2), . . . , (vm, um), where m is the size of E. Since E is not
a perfect matching there is at least one vertex t that does not belong to any of the pairs.

At the first turn, Alice should choose any vertex that does not belong to any of the pairs. At the
second turn, Bob will either have no vertices to go (and thus lose the game) or the only vertex he
can go will belong to one of the pairs in matching E. Now the game is just the same as in the
previous case, but now Bob is the first one to put the chip on a vertex that belongs to one of the
pairs of the matching and because of that Bob will definitely lose.

Page 13 of 21

The 2019 Southeastern Europe Regional Contest

But wait a second... In the previous case every vertex belonged to exactly one pair. Since E in this
case is not perfect, there can be lots of vertices that do not belong to any of the pairs. Why can’t
Bob move to a vertex that does not belong to any of the pairs, just like Alice did in the first turn?

Let’s suppose that Bob can do so. There are two possible cases:

– Bob decides to move the chip on a vertex that does not belong to any of the pairs on the second
turn. If he can do so, the previous vertex and the new one can be matched, and thus E is not
a maximum matching. Contradiction.

– Bob decides to move the chip on a vertex that does not belong to any of the pair on the k-th
turn. Let vertices v1, v2, v3, . . . , vk−1, vk be vertices on which the chip was placed on turns 1, 2,
3, . . . , k−1 and k respectively. Since Alice plays the game just like Bob in the case when E was
perfect, k−1 unordered pairs (v2, v3), (v4, v5), . . . , (vk−2, vk−1) belong to E. Whats more, there
are edges between k pairs of vertices (v1, v2), (v3, v4), . . . (vk−1, vk). We can delete the k − 1
pairs from E mentioned earlier and insert k pairs (v1, v2), (v3, v4), . . . , (vk−1, vk). By doing that
we create a new matching E2 that has size greater than that of matching E. That means that
E is not a maximum matching. Contradiction.

So now we know how to solve the problem if know the size of maximum matching of the tree. But how to
find it? You may try to use standard approaches for finding maximum matching, but these are very likely
to get “Time limit exceeded” verdict. Here is author’s approach that works in O(n) that capitalizes on
the way how graph G was built.

We will use recursion + dynamic programming on the initial tree. Let’s define dpv as the minimal number
of vertices that are left unmatched if we try to match all the vertices in the subtree of vertex v.

Let’s say that we want to calculate dpv for some vertex v. Now there are two possible senarios:

• Vertex v is a leaf. Obviously, dpv = 1.

• Vertex v is not a leaf, so it has one or more direct descendants. Let’s denote the direct descendants
of vertex v as d1, d2, . . . , dk. At first, let’s calculate values of dpd1 , dpd2 , . . . , dpdk . Let’s define
D =

∑k
i=1 dpdi . If D is greater than 0, then we can match vertex v with one of it’s unmatched

descendants and get dpv = D − 1. Otherwise, all of the descendants of vertex v were matched, so
obviously vertex v has no vertex to match with, so dpv = 1. We get the formula:

dpv =

{
D − 1, if D > 0

1, if D = 0
, where D =

k∑
i=1

dpdi

If dp1 = 0, then we can match all of the vertices and thus the maximum matching is perfect, which means
Bob will win. Otherwise, Alice will win.

Page 14 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Projection”

Author: Virgil Palanciuc
Developer: Adrian Budău
Editorialist: Adrian Budău

Let’s call the 2 projections the NM and NH projections.

First of all, we can notice that a shadow on row X in one of the projections can only be generated from a
cube that is at coordinates (X, someY, someZ). This means that the problem can be solved independently
for each X from 1 to N .

First let’s discuss the case of no solution: If at some row X one of the projections has at least one shadow
(implying there is a cube at this row), but the other one doesn’t (implying that there isn’t any cube at
this row) then obviously we can not construct a solution. If this doesn’t happen there is always a solution
and it will be obvious from the construction.

For the maximum number of cubes, the solution is unique. If the NM projection has a shadow (X,Y)
and the NH solution has a shadow at (X,Z) then we can put a cube at (X,Y, Z). There is no other
spot we can place a cube, thus the solution is unique. Since it’s unique we just have to print these cubes
ordered by X, then by Y , then by Z to get the minimal lexicographically solution.

For the minimum number of cubes let’s look at some row X. If the NM projection has P shadows it
means there are at least P cubes at this row. Similarly, if the NH projection has Q shadows there are at
least Q cubes at this row.

If P = Q and we have shadows in NM at (x, y1), (x, y2), . . . , (x, yP) and shadows in NH at
(x, z1), (x, z2), . . . , (x, zQ) with y1 < y2 < · · · < yP and z1 < z2 < · · · < zQ. then we can place the
P cubes at (x, y1, z1), (x, y2, z2), . . . , (x, yP , zP) and there is no solution using less cubes at this row (since
we need at least P = Q) and no smaller lexicographically one using only P cubes.

If P < Q we obviously need to use the same y multiple times (since we need at least Q cubes at this row).
Because we require the minimum lexicographically solution we should use the smallest y multiple times.
We can duplicate it until we have as many y as z and then apply the same idea as in the P = Q case.

If P > Q we do as in P < Q except we duplicate the smallest z and then apply the same idea as in the
P = Q case.

Total complexity: (N ·M ·H) time and space.

Page 15 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Tree Permutations”

Author: Anton Trygub
Developer: Stanislav Bezkorovainyi

Editorialists: Anton Trygub and Stanislav Bezkorovainyi

Sort the array first. Say that a1 ≤ a2 ≤ · · · ≤ a2n−2.

• Claim 1: If ai > i for some i, there is no valid tree at all.

Proof: Suppose that ai > i. Obviously, this means that at most i− 1 numbers don’t exceed i, but,
from the other side, parents of nodes 2, 3, 4, 5, . . . , i+ 1 all have to be at most i. Contradiction.

• Claim 2: If ai = i for some i, the path from n to 1 has to include i.

Proof: Suppose that ai = i. Obviously, this means that at most i− 1 numbers don’t exceed i− 1.
From the other side, parents of nodes 2, 3, 4, 5, . . . , i all have to be at most i−1. Therefore, all these
i− 1 numbers will be used as parents for 2, 3, 4, 5, . . . , i, and therefore parents of all numbers from
i + 1 to n will be at least i. This means, that we can’t get from n to 1 without coming through i
(suppose that j is the last vertex on the path from n to 1 which is larger than i, then it’s parent
has to be i).

• Let t1, t2, . . . , tm be the set of indexes for which ax = x, with t1 = 1. Let S be the set of all numbers
which appear among ai, excluding tj for 1 ≤ j ≤ m — those are potential other vertices on the
path. Obviously, there is no k-path for k < m (as every path from n to 1 has to include at least
m+1 nodes t1, . . . , tm, n). Also, there is no k-path for k > m+ |S|, as the total possible number of
different vertices in the path doesn’t exceed m+ |S|+ 1 (corresponding to n).

• Claim 3: For m ≤ k ≤ m + |S|, the k-long trees exist. Sum of weights for k-perfect tree can then
be computed as following: mark t1, t2, . . . , tm as used, and k−m smallest elements from S as used.
Answer is the sum of k largest of 2n− 2− k not marked numbers.

Proof: Obviously, this is the upper bound, it’s left to prove that it’s achievable. Denote
k − m smallest elements of S as s1 < s2 < · · · < sk−m. So our path will contain vertices
path1 < path2 < · · · < pathk < pathk+1, where path1 = 1, pathk+1 = n, and path1, path2, . . . , pathk
is a sorted union of t1, t2, . . . , tm, s1, . . . , sk−m. We now set parent of pathi+1 to be pathi for each i.

Mark first occurrences of t1, t2, . . . , tm, s1, . . . , sk−m in a as used. Also mark all the vertices that
we’ve given a parent this way. There are 2n − 2 − k indexes which are yet not used, let them be
x1 ≤ x2 ≤ · · · ≤ x2n−2−k. Now look at all the n − k − 1 vertices (except for 1) which aren’t
assigned a parent yet, assign axi to the i-th of them (in increasing order). After that, distribute
all n − 1 numbers which are left can be used as weights, use k largest of them on the path, and
others arbitrarily. This gives the answer from the claim, we just have to prove that we have actually
produced a tree.

Let v1, v2, . . . , vn−k−1 be a sorted array of vertices which were not assigned a parent yet. Note, that
vertex 1 can not have a parent, so v1 6= 1. Let’s iterate over array v. Let’s say that we want to assign
a parent for vertex vi . As said before, we want to assign parent of vertex vi as axi . This is valid if
and only if axi < vi. Now we have to prove that axi < vi for any i from 1 to n− k − 1.

Let’s suppose that it is not true and for some i, axi ≥ vi. Without loss of generality,
pathj ≤ axi < pathj+1 for some j. It means, that axi is greater than or equal to the numbers
of first j vertices of the path (i.e marked vertices) and axi ≥ vi > vi−1 > . . . > v1 (i.e i unmarked
vertices). Since axi is greater than or equal to the numbers of the first i+ j vertices it means, that
axi ≥ i+ j.

Now let’s look at value xi. What does it mean that an element has position xi in array a? It means
that there are exactly xi − 1 elements before it in the array.

Page 16 of 21

The 2019 Southeastern Europe Regional Contest

How many unmarked positions are there before xi? These are x1, x2, . . . , xi−1. And thus, there are
exactly i− 1 unmarked positions before xi.

How many marked positions are there before xi? As we already said, pathj ≤ axi < pathj+1. Since
we marked the first occurence of pathj in the array, so pathj > pathj−1 > . . . > path1 these are all
before of the position xi. xi < pathj+1 < . . . < pathk these all, obviously go after position xi since
array a is sorted. So there are exactly j marked positions before xi.

Since every position is either marked or not marked, there are exacly i− 1 + j positions before xi.
So, xi = i− 1 + j + 1 = i+ j.

Quick observation. From first two claims we know that if for some i ai > i, then there is no answer
and if for some i ai = i, then we have already added i to out path. So, now we know that on every
position i that has not been marked yet ai < i. Thus, axi < xi. But we have already discovered,
that axi ≥ i+ j and that xi = i+ j, so we get axi ≥ xi. Contradiction.

• Now let’s move to the algorithmic side. We have to be able to calculate the sum of k largest numbers
among x1, x2, . . . , x2n−k where k −m smallest elements of S are discarded. It’s the easy part: for
k = m, the set of m largest numbers will be just m largest numbers in x. Now, maintain the set of
values of S that are prohibited, and we haven’t discarded yet. At every step, add next element of S
to this set, and the next (in decreasing order) xi in the set of the largest numbers. Now, while set
of largest numbers contains some c that is in set to be discarded, delete one instance of c from
both to be discarded and largest numbers, and add a next number into the largest instead. Sum
recalculation is obvious.

Page 17 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Absolute Game”

Author: Roman Bilyi
Developer: Roman Bilyi
Editorialist: Stanislav Bezkorovainyi

Claim. This game is equivalent to the game where Alice has to choose x from her array and then Bob
has to choose y from his array.

Proof. Since Alice can finish the game with whatever x she wants, the result of the game for Bob can’t
be better than in the game mentioned above. Now let’s prove that it is always possible for Bob to achieve
this.

At first, let’s define an array c of n elements. Each ci has such value, that the value of |ai− bci | is minimal
possible. If for some position i there are more than one possible ci, then choose the smallest one. In other
words, we build an array such that if Alice finishes the game with x = ai, then the best outcome for Bob
is if y = bci .

Let’s say that in the first turn, Alice removes some element ai. Then we should also remove the element
ci from array c. Now, since there are n − 1 elements of the array c, there is at least one such position
1 ≤ p ≤ n, that ci 6= p for every i. Bob should remove the element bp. It is optimal because whatever x
we end up with, he will still be able to choose the best possible y from the remaining elements of array b.

In general, if after some turns there are k elements in Alice’s array and Bob’s array, now it’s Alice’s turn
and if she removes an element ai from her array, then Bob should remove an element bp on such position
p that there are no ci = p among all possible i (i.e. among all such i that ai have not been removed yet).

If Bob plays the way mentioned above, then after each his turn, for every x from the remaining array a,
he will be able to choose the best possible y from the remaining array b.

Ok, I got it. But how to implement it? Implementation of the “light version” of the game is rather
straightforward. Let’s define an array ans such that ansi is the answer if Alice decides to choose x to be
equal to ai. If x is equal to ai, then Bob will obviously choose such y that |x − y| is minimal possible.
Thus, we get the formula:

ansi =
n

min
j=1
|ai − bj |

Since Alice wants to maximize |x− y|, the final answer is equal to maxni=1 ansi.

Page 18 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Graph and Cycles”

Author: Anton Trygub
Developer: Stanislav Bezkorovainyi
Editorialist: Stanislav Bezkorovainyi

Since n is always odd, then the degree of each vertex (i.e number of vertices adjacent to it) is always even,
so there are even number of edges adjacent to each vertex.

Let’s look at an edge e that connects two vertices (v1, v2). In a cycle-array to which e will belong, this
edge will be adjacent (i.e compared when calculating the price of the cycle-array) with exactly one edge,
that is connected to v1 and exactly one edge that is connected to v2.

So, if we look at a vertex v, then all the edges that are connected to it can be divided into n−1
2 pairs of

edges (e1, e2), where e1 and e2 belong to same cycle-array and e1 is adjacent with e2. So now, we can
define the price of a vertex as the sum of maximums of weights in such pairs. In other words, if all the
edges that are adjacent to a vertex v are arranged in pairs like that (e1, e2), (e3, e4), . . . , (en−2, en−1), then:

Price of v =

n−1
2∑

i=1

max(weight of e2·i−1,weight of e2·i)

It is easy to see that sum of prices for all of the vertices is equal to price of the cycle-split.

Let’s say that edges e1, e2, . . . , en−1 with weights w1, w2, . . . , wn−1 are connected to v. Let’s say, that w′

is a sorted array w. It is easy to prove that the smallest possible price of a vertex can be obtained if we
split the wieghts into pairs in the following way: (w′1, w′2), (w′3, w′4), . . . , (w′n−2, w′n−1).

What is left to prove is that it is achievable. Let’s say that for each vertex v we arranged edges adjacent
to it into pairs, such that the price of the vertex is smallest possible. Let’s denote this arrangement as
(e′1, e

′
2), (e

′
3, e
′
4), . . . , (e

′
n−2, e

′
n−1). Let’s call a pair (e′i, e

′
i+1) unfulfilled if e′i was used and e′i+1 weren’t

or vice versa.

Now, we can build the necessary cycle-split the following way:

• If all of the edges were used, then stop the algorithm.

• Otherwise, we should start forming a new cycle-array that will be added to the split. Find any
vertex v that has an unused edge adjacent to it. We add this edge to the current cycle-array and
mark it as used. Let’s say that it is edge that connects vertex v with vertex u. Let’s set our current
vertex as u and repeat the following algorithm:

– Let’s suppose that our current vertex is some vertex u. If there are no unfulfilled pairs of it,
then the cycle-array has been finally formed, thus we stop the algorithm.

– Otherwise, there is exactly one unfulfilled pair. Wlog that it is pair (e′i, e
′
i+1).

If e′i has not been used yet, then add it to our cycle-array and set the current vertex as a vertex
that the edge e′i connects u with. Now there are no unfulfilled pairs of the vertex u. It can be
seen that e′i+1 was added just before we set u as our current vertex. Thus, e′i and e′i+1 will be
compared, when calculating price of the array.
The similar works for the case when e′i+1 has not been fulfilled.

The cycle array that is obtained this way is always valid, because it is an Euler’s tour of the edges
that belong to it.

So now, we have proven the solution. How to find the answer?

Page 19 of 21

The 2019 Southeastern Europe Regional Contest

For any vertex v create an array w′ that has all the weights of the edges that are connected to it in an
ascending order. The price of this vertex is the sum of the values on even positions in the array w′. The
price of the split is the sum of prices of all the vertices.

Total time complexity O(n2 log n).

Page 20 of 21

The 2019 Southeastern Europe Regional Contest

Problem Editorial: “Stranded Robot”

Author: Vladimir Olteanu
Developer: Vladimir Olteanu

Editorialists: Vladimir Olteanu and Roman Bilyi

For the sake of simplicity, we will be assuming that M = N = P .

The key insight is that the robot can only attach itself to blocks that can be lit. For each of the 6 directions
from which the sun can shine, there are at most N2 blocks that can be lit. The rest of the blocks make
no difference whatsoever, and can be ignored.

Let us consider what happens when the sun is shining along the positive direction of the z axis. In order
to determine which blocks are lit, we will need to compute the depth buffer zMin, where zMin[x, y] is
the minimal z coordinate of all the blocks that share the same x and y, or −∞ if no such block exists.

From this perspective, the moves available to a robot located at (x, y, z) are:

• If z + 1 = zMin[x, y], the robot is resting on top of a block, and can move to
(x± 1, y, zMin[x± 1, y]− 1) or (x, y ± 1, zMin[x, y ± 1]− 1) if the zMin at the the destination is
greater or equal to z + 1.

• If z + 1 < zMin[x, y], the robot can fall to (x, y, zMin[x, y]− 1).

When the sun is shining along the negative direction of the z axis, we compute the depth buffer zMax
instead, where zMax[x, y] is the maximal z coordinate of all the blocks that share the same x and y, or
∞ if no such block exists. The moves available are:

• If z−1 = zMax[x, y], the robot can move to (x±1, y, zMax[x±1, y]+1) or (x, y±1, zMax[x, y±1]+1)
if the zMax at the the destination is less or equal to z − 1.

• If z − 1 > zMax[x, y], the robot can fall to (x, y, zMax[x, y] + 1).

These statements can be generalized for the other two axes.

There are at most 6N2 cells that the robot can visit, and the shortest path to the teleporter can be found
using BFS. This solution works in O(N2) after reading the input. The total complexity is O(N3) and the
memory usage is O(N2).

Page 21 of 21

